Daily Math Week 23 (2013-2014)

Mon. February 3, 2014

Tues. February 4, 2014

Wed. February 5, 2014

Thurs. February 6, 2014

Fri. February 7, 2014

Monday, February 3, 2014 1st

Solve for x:

$$(6x + 9) - (2x - 5) = 38$$

1st

Solve for x:

$$(6x + 9) - (2x - 5) = 38$$

Answer:

$$(6x + 9) - (2x - 5) = 38$$

$$6x + 9 - 2x + 5 = 38$$

$$4x + 14 = 38$$

$$4x + 14 - 14 = 38 - 14$$

$$4x = 24$$

$$4x \div 4 = 24 \div 4$$

$$x = 6$$

2nd

Expand: $8m^2(3m^5 - 2m^4)$

2nd

Expand:

 $8m^2(3m^5-2m^4)$

Answer: $8m^2(3m^5 - 2m^4)$

 $24m^7 - 16m^6$

3rd

Find the greatest common factor:

$$5a^2 + 2a$$

3rd

Find the greatest common factor:

$$5a^2 + 2a$$

Answer:
$$5a^2 = 5 \cdot a \cdot a$$

$$2a = 2 \cdot a$$

$$GCF = a$$

4th

Expand and simplify:

$$(x + 2)(x + 2)$$

4th

Expand and simplify:

$$(x + 2)(x + 2)$$
Answer: $(x + 2)(x + 2)$

$$x(x + 2) + 2(x + 2)$$

$$x^{2} + 2x + 2x + 4$$

$$x^{2} + 4x + 4$$

Monday, February 3, 2014 5th

Find two integers whose product is -20 and whose sum is -1.

Monday, February 3, 2014 5th

Find two integers whose product is -20 and whose sum is -1.

Answer:

Factor 1	Factor 2	Sum
1	-20	1 + -20 = -19
2	-10	2 + -10 = -8
4	-5	4 + -5 = -1
5	-4	5 + -4 = 1
10	-2	10 + -2 = 8
20	-1	20 + -1 = 19

6th

If
$$x = 60$$
, $y = 5$, and $z = 2$, then $\sqrt{\frac{x}{2zy}} = ?$

6th

If
$$x = 60$$
, $y = 5$, and $z = 2$, then $\sqrt{\frac{x}{2zy}} = ?$

Answer: $\sqrt{\frac{x}{2zy}}$

$$\sqrt{\frac{60}{2(2)(5)}} = \sqrt{\frac{60}{20}} = \sqrt{3}$$

7th

Find the polynomial for the perimeter of a triangle whose sides are $(x^2 + 3x + 2)$, $(2x^2 - 5x - 3)$, and $(x^2 + 8x + 15)$.

7th

Find the polynomial for the perimeter of a triangle whose sides are $(x^2 + 3x + 2)$, $(2x^2 - 5x - 3)$, and $(x^2 + 8x + 15)$.

Answer:

Perimeter = Sum of the sides

$$(x^{2} + 3x + 2) + (2x^{2} - 5x - 3) + (x^{2} + 8x + 15)$$

 $(x^{2} + 2x^{2} + x^{2}) + (3x - 5x + 8x) + (2 - 3 + 15)$
 $4x^{2} + 6x + 14$

1st

Expand:

$$7x^2y(3x^2y + 2xy^2 + x^3)$$

1st

Expand:

$$7x^2y(3x^2y + 2xy^2 + x^3)$$

Answer:

$$7x^{2}y(3x^{2}y + 2xy^{2} + x^{3})$$

$$21x^{4}y^{2} + 14x^{3}y^{3} + 7x^{5}y$$

2nd

Find the greatest common factor:

$$5x^2y + xy + 7xy^2$$

2nd

Find the greatest common factor:

$$5x^2y + xy + 7xy^2$$

Answer:

$$5x^{2}y = 5 \cdot x \cdot x \cdot y$$

$$xy = x \cdot y$$

$$7xy^{2} = 7 \cdot x \cdot y \cdot y$$

$$GCF = xy$$

3rd

Expand and simplify:

$$(y - 3)(y - 3)$$

3rd

Expand and simplify:

$$(y - 3)(y - 3)$$

Answer:
$$(y - 3)(y - 3)$$

 $y(y - 3) - 3(y - 3)$
 $y^2 - 3y - 3y + 9$
 $y^2 - 6y + 9$

Tuesday, February 4, 2014 4th

Find two integers whose product is -24 and whose sum is 5.

4th

Find two integers whose product is -24 and whose sum is 5.

Answer:

Factor 1	Factor 2	Sum
1	-24	1 + -24 = -23
2	-12	2 + -12 = -10
3	-8	3 + -8 = -5
4	-6	4 + -6 = -2
6	-4	6 + -4 = 2
8	-3	8 + -3 = 5
12	-2	12 + -2 = -10
24	-1	24 + -1 = 23

5th

If
$$x = 125$$
, $y = 5$, and $z = 2$, then $z(\sqrt{x} + \sqrt{y}) = ?$

5th

If
$$x = 125$$
, $y = 5$, and $z = 2$, then $z(\sqrt{x} + \sqrt{y}) = ?$
Answer: $2(\sqrt{125} + \sqrt{5})$
 $2(\sqrt{25}\sqrt{5} + \sqrt{5})$
 $2(5\sqrt{5} + \sqrt{5})$
 $2(6\sqrt{5}) = 12\sqrt{5}$

Tuesday, February 4, 2014 6th

Find the value of m if the perimeter of the trapezoid is 67.

$$2m + 1$$
 $2m$ $5m + 1$

6th

Find the value of m if the perimeter of the trapezoid is 67.

Answer:

$$4m + 2m + (5m + 1) + (2m + 1) = 67$$

 $13m + 2 = 67$
 $13m + 2 - 2 = 67 - 2$
 $13m = 65$
 $13m \div 13 = 65 \div 13$
 $m = 5$

7th

Expand:

$$30a(2a + b - 3c)$$

7th

Expand:

$$30a(2a + b - 3c)$$

Answer:
$$30a(2a + b - 3c)$$

$$60a + 30b - 90c$$

Wednesday, February 5, 2014 1st

Factor:

$$x^2y^2 + x^3y$$

Wednesday, February 5, 2014 1st

Factor:

$$x^{2}y^{2} + x^{3}y$$
Answer: $x^{2}y^{2} = x \cdot x \cdot y \cdot y$

$$x^{3}y = x \cdot x \cdot x \cdot y$$

$$x \cdot x \cdot y(y + x)$$

$$x^{2}y(y + x)$$

Wednesday, February 5, 2014 2nd

Expand and simplify: $(m + 8)^2$

Wednesday, February 5, 2014 2nd

Expand and simplify: $(m + 8)^2$

Answer:
$$(m + 8)^2 = (m + 8)(m + 8)$$

 $m(m + 8) + 8(m + 8)$
 $m^2 + 8m + 8m + 64$
 $m^2 + 16m + 64$

Wednesday, February 5, 2014 3rd

Find two integers whose product is -60 and whose sum is -11.

Wednesday, February 5, 2014 3rd

Find two integers whose product is -60 and whose

sum is -11.

Answer:

Factor 1	Factor 2	Sum
1	-60	1 + -60 = -59
2	-30	2 + -30 = -28
3	-20	3 + -20 = -17
4	-15	4 + -15 = -11
5	-12	5 + -12 = -7
6	-10	6 + -10 = -4
10	-6	10 + -6 = 4
12	-5	12 + -5 = 7
15	-4	15 + -4 = 11
20	-3	20 + -3 = -17
30	-2	30 + -2 =-28
60	-1	60 + -1 = -59

Wednesday, February 5, 2014 4th

 $3\sqrt{5}$ is between which two integers?

Wednesday, February 5, 2014 4th

 $3\sqrt{5}$ is between which two integers?

Answer:
$$3\sqrt{5} = \sqrt{9}\sqrt{5} = \sqrt{45}$$

$$\sqrt{36} < \sqrt{45} < \sqrt{49}$$

$$6 < \sqrt{45} < 7$$

Wednesday, February 5, 2014 5th

Simplify:

$$\frac{12x^5y^7z^3}{15x^7y^3z^3}$$

Wednesday, February 5, 2014 5th

Simplify:

$$\frac{12x^5y^7z^3}{15x^7y^3z^3}$$

Answer:
$$\frac{12x^5y^7z^3}{15x^7y^3z^3}$$

$$\frac{12y^4}{15x^2} = \frac{3 \cdot 4 \cdot y^4}{3 \cdot 5 \cdot x^2} = \frac{4y^4}{5x^2}$$

Wednesday, February 5, 2014 6th

Expand:

$$6x^2(7x^2-5x-6)$$

Wednesday, February 5, 2014 6th

Expand:

$$6x^2(7x^2 - 5x - 6)$$

Answer:
$$6x^2(7x^2 - 5x - 6)$$

$$42x^4 - 30x^3 - 36x^2$$

Wednesday, February 5, 2014 7th

Factor:

$$5a^5 + 3a^4 + 6a^3$$

Wednesday, February 5, 2014 7th

Factor:

$$5a^{5} + 3a^{4} + 6a^{3}$$
Answer:
$$5a^{5} = 5 \cdot a \cdot a \cdot a \cdot a \cdot a$$

$$3a^{4} = 3 \cdot a \cdot a \cdot a \cdot a$$

$$6a^{3} = 3 \cdot 2 \cdot a \cdot a \cdot a$$

$$a \cdot a \cdot a(5 \cdot a \cdot a + 3 \cdot a + 3 \cdot 2)$$

$$a^{3}(5a^{2} + 3a + 6)$$

Thursday, February 6, 2014 1st

Expand and simplify:

$$(n-5)^2$$

Thursday, February 6, 2014 1st

Expand and simplify:

$$(n-5)2$$
Answer: $(n-5)^2 = (n-5)(n-5)$

$$n(n-5) - 5(n-5)$$

$$n^2 - 5n - 5n + 25$$

$$n^2 - 10n + 25$$

Thursday, February 6, 2014 2nd

Find two integers whose product is - 180 and whose sum is 11.

Thursday, February 6, 2014 2nd

Find two integers whose product is -180 and whose sum is 11.

Factor 1	Factor 2	Sum	Factor 1	Factor 2	Sum
1	-180	1 + -180 = -179	15	-12	15 + -12 = 3
2	-90	2 + -90 = -88	18	-10	18 + -10 = 8
3	-60	3 + -60 = -57	20	-9	20 + -9 = 11
4	-45	4 + -45 = -41	30	-6	30 + -6 = 24
5	-36	5 + -36 = -31	36	-5	36 + -5 = 31
6	-30	6 + -30 = -24	45	-4	45 + -4 = 41
9	-20	9 + -20 = -11	60	-3	60 + -3 = 57
10	-18	10 + -18 = -8	90	-2	90 + -2 =88
12	-15	12 + -15 = -3	180	-1	180 + -1 = 179

Thursday, February 6, 2014 3rd

Evaluate
$$3x^2 - 2x + 10$$
, if $x = \frac{2}{3}$

Thursday, February 6, 2014 3rd

Evaluate
$$3x^2 - 2x + 10$$
, if $x = \frac{2}{3}$

Answer:
$$3x^2 - 2x + 10$$

$$3\left(\frac{2}{3}\right)^{2} - 2\left(\frac{2}{3}\right) + 10$$

$$3\left(\frac{4}{9}\right) - 2\left(\frac{2}{3}\right) + 10$$

$$\frac{12}{9} - \frac{4}{3} + 10$$

$$\frac{12}{9} - \frac{12}{9} + 10 = \mathbf{10}$$

Thursday, February 6, 2014 4th

Find the greatest common factor:

$$-14x^3y^3 + 8x^5y + 20x^5$$

Thursday, February 6, 2014 4th

Find the greatest common factor:

$$-14x^3y^3 + 8x^5y + 20x^5$$

$$-14x^{3}y^{3} = -1 \cdot 2 \cdot 7 \cdot x \cdot x \cdot x \cdot y \cdot y \cdot y$$

$$8x^{5}y = 2 \cdot 2 \cdot 2 \cdot x \cdot x \cdot x \cdot x \cdot x \cdot y$$

$$20x^{5} = 2 \cdot 2 \cdot 5 \cdot x \cdot x \cdot x \cdot x \cdot x$$

$$GCF = 2x^{3}$$

Thursday, February 6, 2014 5th

Expand and simplify:

$$(x + 10)(x - 10)$$

Thursday, February 6, 2014 5th

Expand and simplify:

$$(x + 10)(x - 10)$$

$$x(x-10) + 10(x-10)$$

$$x^{2} - 10x + 10x - 100$$

$$x^{2} - 100$$

Thursday, February 6, 2014 6th

Find two integers that multiply to -16 and add to 0.

Thursday, February 6, 2014 6th

Find two integers that multiply to -16 and add to 0.

Factor 1	Factor 2	Sum
1	-16	1 + -16 = -15
2	-8	2 + -8 = -6
4	-4	4 + -4 = 0
8	-2	8 + -2 = 6
16	-1	16 + -1 = 15

Thursday, February 6, 2014 7th

Solve for *d*:

$$3(3d + 5) - 4(2d - 3) = 11$$

Thursday, February 6, 2014 7th

Solve for *d*:

$$3(3d + 5) - 4(2d - 3) = 11$$

$$3(3d + 5) - 4(2d - 3) = 11$$

 $9d + 15 - 8d + 12 = 11$
 $d + 27 = 11$
 $d + 27 - 27 = 11 - 27$
 $d = -16$

Friday, February 7, 2014 1st

Write an expression for the area of a rectangle whose length is n^3 and whose width is $2n^2$.

Friday, February 7, 2014 1st

Write an expression for the area of a rectangle whose length is n^3 and whose width is $2n^2$.

Answer: Area = length x width

Area =
$$n^3 \cdot 2n^2 = 2n^5$$

Friday, February 7, 2014

2nd

Expand and simplify:

$$6x^2(x-7) - 3x(x+9)$$

Friday, February 7, 2014 2nd

Expand and simplify:

$$6x^{2}(x-7) - 3x(x+9)$$
Answer: $6x^{2}(x-7) - 3x(x+9)$

$$6x^{3} - 42x^{2} - 3x^{2} - 27x$$

$$6x^{3} - 45x^{2} - 27x$$

Friday, February 7, 2014 3rd

Find the greatest common factor: $30u^3v^6 + 21u^2v^2 + 3u^2v$

Friday, February 7, 2014

3rd

Find the greatest common factor:

$$30u^3v^6 + 21u^2v^2 + 3u^2v$$

$$30u^{3}v^{6} = 2 \cdot 3 \cdot 5 \cdot u \cdot u \cdot u \cdot v \cdot v \cdot v \cdot v \cdot v \cdot v$$

$$21u^{2}v^{2} = 3 \cdot 7 \cdot u \cdot u \cdot v \cdot v$$

$$3u^{2}v = 3 \cdot u \cdot u \cdot v$$

$$GCF = 3u^2v$$

Friday, February 7, 2014 4th

Expand and simplify: (a + 1)(a - 1)

Friday, February 7, 2014 4th

Expand and simplify: (a + 1)(a - 1)

Answer:
$$(a + 1)(a - 1)$$

 $a(a - 1) + 1(a - 1)$
 $a^2 - a + a - 1$
 $a^2 - 1$

Friday, February 7, 2014 5th

Find two integers that multiply to -49 and add to 0.

Friday, February 7, 2014 5th

Find two integers that multiply to -49 and add to 0.

Factor 1	Factor 2	Sum
1	-49	1 + -49 = -48
7	-7	7 + -7 = 0
49	-1	49 + -1 = 48

Friday, February 7, 2014

6th

Arrange the following values in order from **least to greatest** if x = -2:

$$\frac{9}{x} \qquad \sqrt{-4x} \qquad x+9 \qquad \frac{9x}{3}$$

Friday, February 7, 2014

Answer:

6th

Arrange the following values in order from **least to greatest** if x = -2:

$$\frac{9}{x} \sqrt{-4x} \quad x + 9 \quad \frac{9x}{3}$$

$$\frac{9}{-2} = -4.5$$

$$\sqrt{-4(-2)} = \sqrt{8} \approx 2.82$$

$$(-2) + 9 = 7$$

$$\frac{9(-2)}{3} = -6$$

$$-6 < -4.5 < 2.82 < 7$$

$$\frac{9x}{3} < \frac{9}{x} < \sqrt{-4x} < x + 9$$

Friday, February 7, 2014 7th

Simplify:

$$\frac{(x^2y^{-4})^{-1}}{x^3y^{-4}\cdot y^3}$$

Friday, February 7, 2014

7th

Simplify:

$$\frac{(x^2y^{-4})^{-1}}{x^3y^{-4} \cdot y^3}$$

Answer:
$$\frac{(x^2y^{-4})^{-1}}{x^3y^{-4}\cdot y^3} = \frac{x^{-2}y^4}{x^3y^{-1}}$$

$$\frac{y^4y}{x^3x^2} = \frac{y^5}{x^5} \text{ or } \left(\frac{y}{x}\right)^5$$